parse_guess()
returns the parser vector. This function uses a number of heuristics
to determine which type of vector is "best". Generally they try to err of
the side of safety, as it's straightforward to override the parsing choice
if needed.
Usage
parse_guess(
x,
na = c("", "NA"),
locale = default_locale(),
trim_ws = TRUE,
guess_integer = FALSE,
guess_max = NA,
.return_problems = FALSE
)
col_guess()
Arguments
- x
Character vector of values to parse.
- na
Character vector of strings to interpret as missing values. Set this option to
character()
to indicate no missing values.- locale
The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use
locale()
to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.- trim_ws
Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed from each field before parsing it?
- guess_integer
If
TRUE
, guess integer types for whole numbers, ifFALSE
guess numeric type for all numbers.- guess_max
Maximum number of data rows to use for guessing column types.
NA
: uses all data.- .return_problems
Whether to hide the
problems
tibble from the output
See also
Other parsers:
col_skip()
,
parse_datetime()
,
parse_factor()
,
parse_logical()
,
parse_number()
,
parse_vector()
Examples
# Logical vectors
parse_guess(c("FALSE", "TRUE", "F", "T"))
#> [1] FALSE TRUE FALSE TRUE
# Integers and doubles
parse_guess(c("1", "2", "3"))
#> [1] 1 2 3
parse_guess(c("1.6", "2.6", "3.4"))
#> [1] 1.6 2.6 3.4
# Numbers containing grouping mark
parse_guess("1,234,566")
#> [1] 1234566
# ISO 8601 date times
parse_guess(c("2010-10-10"))
#> [1] "2010-10-10"