cols()
includes all columns in the input data, guessing the column types
as the default. cols_only()
includes only the columns you explicitly
specify, skipping the rest. In general you can substitute list()
for
cols()
without changing the behavior.
Usage
col_skip()
cols(..., .default = col_guess())
cols_only(...)
Arguments
- ...
Either column objects created by
col_*()
, or their abbreviated character names (as described in thecol_types
argument of read_delim). If you're only overriding a few columns, it's best to refer to columns by name. If not named, the column types must match the column names exactly.- .default
Any named columns not explicitly overridden in
...
will be read with this column type.
Details
The available specifications are: (with string abbreviations in brackets)
col_logical()
[l], containing onlyT
,F
,TRUE
orFALSE
.col_integer()
[i], integers.col_double()
[d], doubles.col_character()
[c], everything else.col_factor(levels, ordered)
[f], a fixed set of values.col_date(format = "")
[D]: with the locale'sdate_format
.col_time(format = "")
[t]: with the locale'stime_format
.col_datetime(format = "")
[T]: ISO8601 date timescol_number()
[n], numbers containing thegrouping_mark
col_skip()
[_, -], don't import this column.col_guess()
[?], parse using the "best" type based on the input.
See also
Other parsers:
parse_datetime()
,
parse_factor()
,
parse_guess()
,
parse_logical()
,
parse_number()
,
parse_vector()
Other parsers:
parse_datetime()
,
parse_factor()
,
parse_guess()
,
parse_logical()
,
parse_number()
,
parse_vector()
Examples
cols(a = col_integer())
#> cols(
#> a = col_integer()
#> )
cols_only(a = col_integer())
#> cols_only(
#> a = col_integer()
#> )
# You can also use the standard abbreviations
cols(a = "i")
#> cols(
#> a = col_integer()
#> )
cols(a = "i", b = "d", c = "_")
#> cols(
#> a = col_integer(),
#> b = col_double(),
#> c = col_skip()
#> )
# You can also use multiple sets of column definitions by combining
# them like so:
t1 <- cols(
column_one = col_integer(),
column_two = col_number()
)
t2 <- cols(
column_three = col_character()
)
t3 <- t1
t3$cols <- c(t1$cols, t2$cols)
t3
#> cols(
#> column_one = col_integer(),
#> column_two = col_number(),
#> column_three = col_character()
#> )